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Goodness-of-fit vs test of hypothesis

Goodness-of-fit tests (GOF): Given a postulated model for the
data we test it against all possible alternatives.
E.g., we expect that X ∼ N(µ, 1), we test

H0 : X ∼ N(µ, 1) versus H1 : X 6∼ N(µ, 1).

⇒ we have some power against all alternative models .

Tests of hypotheses: Given a postulated model for the data, we
test it against an alternative model.
E.g., we expect that X ∼ N(µ, 1), we test

H0 : µ = 0 versus H1 : µ 6= 0.

⇒ we have high power only against the alternative model under H1 .
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Which Goodness-of-Fit test should we use? (1)

Discrete data

We typically rely on Pearson’s X 2 or its asymptotically equivalent
counterparts.

Main advantages

Simple to implement

When the expected counts are large we have a good χ2

approximation (even if there are parameters to estimate).
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Which Goodness-of-Fit test should we use? (2)

Continuous data

We have quite a few options:

Kolmogorov-Smirnov

Cramer-von Mises

Anderson-Darling

etc...

What do they have in common?

They can all be specified as functionals of the empirical process.
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The empirical process

Given a set of observations x1, . . . , xn from a continuous random variable
X with unknown cumulative distribution function (cdf) P(x) = P(X ≤ x).
We are interested in testing

H0 : P = Q versus H1 : P 6= Q

for some postulated distribution Q(x). Since P(x) is unknown, we begin
by identifying an estimate of P(x). A natural choice is the

empirical cumulative distribution function: Pn(x) = 1
n

∑n
i=1 1{xi≤x} .

To construct our test we consider the empirical process:

vQ(x) =
√
n
[
Pn(x) − Q(x)

]
= 1√

n

∑n
i=1

[
1{xi≤x} −Q(x)

]
.
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An entire family of GOF tests

Recall that

vQ(x) =
√
n
[
Pn(x)− Q(x)

]
(1)

By taking functionals of vQ(x) we can construct a variety of GOF tests
statistics. E.g.,

Kolmogorov-Smirnov statistic: KS = supx vQ(x) .

Cramer-von Mises statistic: CvM =
∫
|vQ(x)|2dQ(x) .

Anderson-Darling statistic: AD =

∫ ∣∣∣ vQ(x)√
Q(x)(1−Q(x))

∣∣∣2dQ(x) .
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Advantages

If X is 1-dimensional and Q does not depend on unknown parameters,
we consider the transformation

T = Q(X ) , and ti = Q(xi ),

for i = 1, . . . , n. We know that T ∼ Unif[0, 1], hence, use the
uniform empirical process

un(t) = 1√
n

∑n
i=1

[
1{ti≤t} − t

]
instead of vQ(x) , and take functionals of un(t) as test statistic ⇒ we
know the distribution of KS, CvM, and AD statistics and we have
distribution-freeness.

Distribution-freeness

We have distribution-freeness whenever the distribution of the test statistic
considered does not depend on the model Q being tested.

To see how, consider T = Q(X ) , and ti = Q(xi ), for i = 1, . . . , n. We

know that Q(x) ∼ Unif[0, 1], hence, use the uniform empirical process

un(t) = 1√
n

∑n
i=1

[
1{ti≤t} − t

]
instead of vQ , and take functionals of un(t) as test statistics.

S. Algeri (UMN) GMU 7 / 32



Limitations

If X is multidimensional and/or Q depends on unknown parameters, θ,

estimated by means of some estimator θ̂, then

T = Q(X , θ̂) 6∼ Uniform[0, 1]

⇒ we lose distribution-freeness.
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The simplest possible solutions

If X is multi-dimensional and/or Q depends on unknown parameters

Discretize the data and use Pearson X 2 (or asymptotic equivalent).

Cons: Loss of information/power + in a low counts regime we run into
serious problems (e.g., Haberman, 1988).

Simulate the distribution of our KS, CvM, and AD statistics
numerically via Monte Carlo or the parametric bootstrap.

Cons: Computational complexity may be high + simulations must be

repeated on a case-by-case basis.

⇓
In the remaining of the talk we will see two approaches which will

help us to overcome these two limitations.
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The parametric empirical process

Given a set of observations x1, . . . , xn from an unknown cumulative
distribution function (cdf) P(x) = P(X ≤ x), X ∈ X ⊆ RD . We are
interested in testing

H0 : P(x) = Q(x ,θ) versus H1 : P(x) 6= Q(x ,θ)

for some postulated distribution Q(x ,θ). To perform the test above, we
consider the parametric empirical process vQ(x ,θ)

vQ(x ,θ) =
√
n
[
Pn(x) − Q(x ,θ)

]
(2)
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Estimating the empirical process

Let θ̂ be the MLE of θ, plug-it in vQ(x ,θ):

vQ(x , θ̂) =
√
n
[
Pn(x)− Q(x , θ̂)

]
.

Simulating vQ(x , θ̂) via the parametric bootstrap

Let θ̂obs= MLE of θ obtained on the data observed.

For b=1,. . . , B:

Simulate a bootstrap sample x (b)
n = (x

(b)
1 , . . . , x

(b)
n ) from Q(x , θ̂obs);

Estimate θ on x (b)
n and obtain θ̂(b),

For each point x considered evaluate

vQ(x , θ̂(b)) =
1√
n

n∑
i=1

[
1{x (b)

i ≤x} − Q(x , θ̂(b))
]
.

Warning: If we evaluate the process at R points x over the search region,
we have to evaluate Q(x , θ̂(b)), a total of RxB times.
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Can we make it faster?

Recall that

vQ(x , θ̂) =
√
n
[
Pn(x)− Q(x , θ̂)

]
.

A Taylor expansion of vQ(x , θ̂) around θ leads to

vQ(x , θ̂) ≈ vQ(x ,θ) −
√
n (θ̂ − θ)T ∂

∂θQ(x ,θ) .

Moreover, let q(x ,θ) be the density of Q, a know theoretical result is

√
n (θ̂ − θ) ≈ 1√

n
Γ−1θ︸︷︷︸

Inverse of
the Fisher
information

n∑
i=1

∂

∂θ
log q(xi ,θ)︸ ︷︷ ︸
Score

function
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The projected empirical process

Putting everything together

vQ(x , θ̂)︸ ︷︷ ︸
Empirical
process

at θ̂

≈ vQ(x ,θ)︸ ︷︷ ︸
Empirical
process
at θ

− 1√
n

p∑
j=1

∂
∂θj

Q(x ,θ) Γ−1θ︸︷︷︸
Inverse of
the Fisher
information

n∑
i=1

∂

∂θj
log q(xi ,θ)︸ ︷︷ ︸
Score

functions

The error of the approximation is op(1), that is, it quickly converges
to zero in probability as n→∞.

We call the right-hand-side of the approximation above projected
empirical process (Khmaladze, 1980) and we denote it by ṽQ(x ,θ) .

The projected empirical process does not depend on θ̂!

Why “projected”? (I will tell you in a few slides).
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Simulating ṽQ(x ,θ) via the parametric bootstrap

Let θ̂obs= MLE of θ obtained on the data observed.

Evaluate Q(x , θ̂obs) and ∂
∂θj

Q(x , θ̂obs) at each point x considered.

For b=1,. . . , B:

Simulate a bootstrap sample x (b)
n = (x

(b)
1 , . . . , x

(b)
n ) from Q(x , θ̂obs);

For each point x considered evaluate

ṽQ(x , θ̂obs) =
1√
n

n∑
i=1

[
1{x (b)

i ≤x} − Q(x , θ̂obs)
]
−

1√
n

p∑
j=1

∂

∂θj
Q(x , θ̂obs)Γ−1

θ̂obs

n∑
i=1

∂

∂θj
log q(x (b)

i , θ̂obs)

Note: If we evaluate the process at R points x over the search region, we
have to evaluate Q(x , θ̂obs) and ∂

∂θj
Q(x , θ̂obs), a total of R times (instead

of R × B times!)
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A toy example

We draw a sample of n = 100 observations from

q(x ,θ) ∝ e
− 1

2θ3

[
(x1−θ1)2+(x2−θ2)2

]
x ∈ X = [1, 20]× [1, 25], (3)

θ = (−2, 5, 25) and its MLE is θ̂obs = (−0.77, 6.32, 22.02).

We proceed by simulating the distribution of the KS statistic via

1. Simulate vQ(x , θ̂) by sampling from Q(x , θ̂obs) via the parametric
bootstrap.

2. Simulate ṽQ(x ,θ) by sampling from Q(x , θ̂obs) via the parametric
bootstrap.
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Simulated distributions of the KS statistic
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Which simulation procedure should we use?

In theory, we would expect that bootstrapping the projected
empirical process will be faster. But how much faster?

In our toy example...

Overall (system+user) CPU time needed to simulate the distributions of
the Kolmogorov statistic supx |vQ(x , θ̂)| and supx |ṽQ(x ,θ)| via the
parametric bootstrap over 10, 000 replicates and n = 100 observations.

supx |ṽQ(x ,θ)| supx |vQ(x , θ̂)|

CPU time 9.429 mins 12.198 hrs
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Discovery claims in physics and astronomy

Ok but what if the model are complex and the significance requirements
stringent?

The claim of a discovery: a 5σ artifact

H.B. Prosper in a 2012 ISBA discussion on the Higgs Boson:

“ . . . the search for the Higgs took some 45 years, tens of thousands
of scientists and engineers, billions of dollars, not to mention numerous
divorces, huge amounts of sleep deprivation, tens of thousands of bad
airline meals, etc., etc., we want to be sure as is humanly possible that
this is real.”

Consequence:

O(109) simulations from realistic models might get quite prohibitive
=⇒ Bootstrap.
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So, what if we want to test another model, F (x ,β)
which is rather complicated?

(Can we somehow retrieve distribution-freeness?)
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Why “projected”?

Consider the normalized score vector defined as

b(x ,θ) = Γ
−1/2
θ

∂

∂θ
log q(xi ,θ). (4)

That is, conversely from ∂
∂θj

logQ(x ,θ), each component bj(x ,θ) of (4)

has mean zero, unit variance and is uncorrelated with each bk(x ,θ), k 6= j .

Our projected empirical process ṽQ(x ,θ) is a projection of vQ(x ,θ)

orthogonal to the normalized scored functions bj(x ,θ) .
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A useful (re-)formulation

Specifically,

ṽQ(x ,θ) =

vQ(x ,θ)︷ ︸︸ ︷
1√
n

n∑
i=1

[
1{xi≤x} −Q(x ,θ)

]
−
∫
X

bT (x ,θ) d vQ(x ,θ)

∫ x

−∞
b(x ,θ) dx

=
1√
n

n∑
i=1

{ [
1{xi≤x} −Q(x ,θ)

]
−bT (xi ,θ)

∫ x
−∞ b(x ,θ)dx

}

Setting everything in the curly brackets equal to ψx(xi ,θ) , we have

ṽQ(x ,θ) =
1√
n

n∑
i=1

ψx(xi ,θ) . (5)

We will see very soon that the functions ψx(xi ,θ) play a
fundamental role here.
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A projected Brownian motion

The limiting process of ṽQ(x ,θ) can be shown to be a projected

Brownian motion orthogonal to the normalized score functions bj(·,θ)
(Khmaladze, 1980).

⇒ the limit of ṽQ(x ,θ) is Gaussian!
⇒ it is characterized by its mean and covariance functions, i.e.,

EQ [ṽQ(x ,θ)] =

∫
ψx(t,θ) dQ(t,θ) = EQ

[
ψx
]

= 0

EQ [ṽQ(x ,θ)ṽQ(x ′,θ)] =

∫
ψx(t,θ)ψx′(t,θ) dQ(t,θ) = EQ

[
ψxψx′

]
⇒ what really characterizes the limit are our ψx .
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Towards (asymptotic) distribution-freeness

Can we construct another process whose limit, under F (x ,β), will
be the same as that of ṽQ(x ,θ) under Q?

The key here is to “play” with our ψx(xi ,θ) functions so that, by taking

a suitable transformation of them, namely φx(xi ,θ,β) , we have that the
processes

ṽF (x ,θ,β) = 1√
n

∑n
i=1 φx(xi ,θ,β) and ṽQ(x ,θ) = 1√

n

∑n
i=1 ψx(xi ,θ)

will have the same limit, under F and Q, respectively.

This can be done by means of the Khmaladze-2 (K-2) transform
(Khmaladze, 2016).
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The K-2 transform in a nutshell

The K-2 transform applied to the functions ψx(xi ,θ) is

φx(xi ,θ,β) = U
[
K
[
lθ,β(xi )︸ ︷︷ ︸

K-2 transform

ψx(xi ,θ)
]]

The isometry lθ,β(x) =
√

q(x,θ)
f (x,β)

ensures EF

[
(lθ,βψx )(lθ,βψx′)

]
= EQ

[
ψxψx′

]
.

The unitary operator K ensures that EF

[
Klθ,βψx

]
= EQ

[
ψx
]
= 0.

The unitary operator U ensures orthogonality w.r.t. the normalized score
functions for F (x ,β), i.e., aj (x ,β), j = 1, . . . , p.
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A new family of test statistics

Recall that

ṽF (x ,θ,β) = 1√
n

∑n
i=1 φx(xi ,θ,β) and ṽQ(x ,θ) = 1√

n

∑n
i=1 ψx(xi ,θ)

We can now construct our K-2 rotated test statistics as

KSF |Q = sup
x
| ṽF (x ,θ,β) |, CvMF |Q =

∫
X

ṽ2
F (x ,θ,β) dQ(x ,θ),

and ADF |Q =

∫
X

ṽ2
F (x ,θ,β)

Q(x ,θ)[1− Q(x ,θ)]
dQ(x ,θ),

(6)

which have the same limiting distribution as

KSQ = sup
x
| ṽQ(x ,θ) |, CvMQ =

∫
X

ṽ2
Q(x ,θ) dQ(x ,θ),

and ADQ =

∫
X

ṽ2
Q(x ,θ)

Q(x ,θ)[1− Q(x ,θ)]
dQ(x ,θ),

(7)
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Requirements on F and Q

Can we use any F (x ,β) and any Q(x ,θ)?

Let f (x ,β) and q(x ,θ) be the densities of F (x ,β) and Q(x ,θ). We
require that:

f (x ,β) = 0 iff q(x ,θ) = 0 (they have the same support).
θ, β are both of size p (the have the same size).

These are rather general criteria! ⇒ Q(x ,θ) can be chosen to be
arbitrarily simple to ease the computations.

We call Q(x ,θ) “reference distribution” because, for any F1, . . . ,FM
satisfying these criteria, we can construct a process ṽFm ,
m = 1, . . . ,M with the same distribution as ṽQ .
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An illustrative example

Data: a sample of n = 100 observations generated from

p(x) ∝ (2π)−1|Σ|−1/2
[
1 + (x − µ)TΣ−1(x − µ)

]−3/2
, (8)

where µ = (0, 3)T , Σ =

[
20 10
10 20

]
, x ∈ X = [1, 20]× [1, 25].

Null models we aim to test:

f1(x ;β) ∝ x
(β1−1)
1 x

(β2−1)
2 exp

{
−β3(x1 + x2)

}
,

f2(x ;β) ∝ β3
2π

[(x1 − β1)2 + (x2 − β2)2 + β3]−3/2,

f3(x ;β) ∝ e
− 1

200

[(
x1
β1
−1
)2

+
(

x2
β2
−1
)2
−β3

(
x1
β1
−1
)(

x2
β2
−1
)]
,

(9)

Reference distribution: q(x ,θ) ∝ e
− 1

2θ3

[
(x1−θ1)2+(x2−θ2)2

]
.
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Classical KS, CvM and AD: null distribution

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

P
(K

S
≤

c)

KSQ

KSF1
KSF2
KSF3

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

P
(C

vM
≤

c)

CvMQ

CvMF1
CvMF2
CvMF3

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

P
(A

D
≤

c)

ADQ

ADF1
ADF2
ADF3

Each simulation involves
100,000 bootstrap replicates,
100 observations, and the
process is evaluated at 2000
grid points.
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Rotated KS, CvM and AD: null distribution
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A few practical considerations
and possible points of discussion

The “closer” our reference distribution, Q, is to the F model we
want to test, the “quicker” we will achieve distribution-freeness.

The K-2 transform involves the operators K and U, these are linear
operators ⇒ while their implementation may be tedious when dealing
with many parameters, it is not very difficult.

Recall that their evaluation does not need to be repeated on multiple
runs, and it is only needed to evaluate the K-2 rotated test statistics on
the data observed.
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Thank you all for your time.
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